Modifying XCS for Size-Constrained Systems
نویسندگان
چکیده
Extended Classifier Systems, or XCS, is a soft-computing approach to machine learning in rule-based systems. While XCS has been shown effective in learning accurate, compact and complete mappings of an environment’s payoff landscape, it can require significant resources to do so. This paper presents four modifications that allow XCS to achieve high performance even in highly size-constrained populations. By modifying the genetic algorithm trigger function, the classifier deletion-selection mechanism, the frequency of classifier parameter updates and the genetic algorithm selection function – the modified system more efficiently uses the available population resources. Experimental results demonstrate the improvement in performance achieved with the proposed modifications in both the single-step 6-Multiplexer problem and the multi-step Woods-2 problem.
منابع مشابه
Improving Performance in Size-Constrained Extended Classifier Systems
Extended Classifier Systems, or XCS, have been shown to be successful at developing accurate, complete and compact mappings of a problem’s payoff landscape. However, the experimental results presented in the literature frequently utilize population sizes significantly larger than the size of the search space. This resource requirement may limit the range of problem/hardware combinations to whic...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملA chance-constrained multi-objective model for final assembly scheduling in ATO systems with uncertain sub-assembly availability
A chance-constraint multi-objective model under uncertainty in the availability of subassemblies is proposed for scheduling in ATO systems. The on-time delivery of customer orders as well as reducing the company's cost is crucial; therefore, a three-objective model is proposed including the minimization of1) overtime, idletime, change-over, and setup costs, 2) total dispersion of items’ deliver...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملSolving Problems in Partially Observable Environments with Classiier Systems (experiments on Adding Memory to Xcs) Solving Problems in Partially Observable Environments with Classiier Systems (experiments on Adding Memory to Xcs)
XCS is a classi er system recently introduced by Wilson that differs from Holland's framework in that classi er tness is based on the accuracy of the prediction instead of the prediction itself. According to the original proposal, XCS has no internal message list as traditional classi er systems does; hence XCS learns only reactive input/output mappings that are optimal in Markovian environment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002